

# **Grease Interceptor Sizing Methods**

Grease interceptors are passive devices required by municipalities to stop fat, oil, and grease (FOG) from entering the city's sanitary sewer system. These materials cause blockages in the system, which cause backups and overflows. Grease interceptors are designed to separate FOG from wastewater so that they can be removed before they enter the sewer system. All restaurants, caterers, school cafeterias and other commercial cooking facilities shall avoid discharging FOG into the municipal sewer system. Grease interceptors must receive wastewater from all contributory sources, such as pot sinks, dishwashers, floor drains and mat washing area drains before draining to the sanitary sewer system. Interceptors must typically be sized for the peak wastewater flow from all contributory sources. For grease interceptors to function properly they must also be regularly serviced and maintained by a qualified personnel.

The following are three most popular sizing methods currently acceptable to various jurisdictions. Since there is little agreement among various authorities on grease interceptor sizing, and these methods are somewhat arbitrary and subjective to individual interpretation, a specifying engineer should consult local authority before using any of following sizing methods. Fortunately, PDI, ASME, IAPMO, and UPC are revising their sizing methods, it is expected that a generally accepted sizing protocol will be eventually established. Please come back to visit our website for the latest development.

### A. Interceptor Sizing Based on Waste Pipe Diameter Size

For a waste pipe installed with a typical slope of  $\frac{1}{4}$ " per foot, there is a maximum flow if water flows on its own gravity. Based on this theory, an interceptor can be selected based on the following chart. Since the flow control is required to be installed with the interceptor, this method is simple and reasonable.

| Pipe     | Slope/ft | Maximum Full | Interceptor | Interceptor |
|----------|----------|--------------|-------------|-------------|
| Diameter | 1/4"     | Pipe Flow    | Size 1 Min. | Size 2 Min. |
|          |          | (nominal)    | (nominal)   | (nominal)   |
| 2"       | .240     | 20 gpm       | 20 gpm      | 10 gpm      |
| 3"       | .240     | 60 gpm       | 75 gpm      | 35 gpm      |
| 4"       | .240     | 125 gpm      | 150 gpm     | 75 gpm      |
| 5"       | .240     | 230 gpm      | 250 gpm     | 125 gpm     |
| 6"       | .240     | 375 gpm      | 500 gpm     | 250 gpm     |

#### Interceptor Sizing using Maximum Gravity Flow Rates

**WARNING:** Cancer and Reproductive Harm - www.p65warnings.ca.gov



## **B.** Interceptor Sizing Based on Point of Use Fixture Size

| Steps | Formula                                                                   | Example                                                                 |  |
|-------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| 1     | Determine volume of fixture by                                            | A sink 48 inch long x 24 inch wide x $12$ inch doon. Volume = 48 x 24 z |  |
| 1     | donth                                                                     | 12 inch deep. Volume = $48 \times 24 \times 12 = 12824$ subia inch      |  |
| 2     | Determine consistentia college                                            | 12 - 13824 cubic men                                                    |  |
| 2     | Determine capacity in gallons $1 \text{ solution} = 221 \text{ solution}$ | volume in gallons $12824/221=50.8$ collars                              |  |
| 2     | Igailon – 231 cubic inches                                                | 13824/231–39.8 gallons                                                  |  |
| 3     | Determine actual drainage load. The                                       | Actual drainage load:                                                   |  |
|       | lixiure                                                                   | 0.75 x 59.8 p 44.9 gal                                                  |  |
|       | is normany filled to 75% of capacity                                      |                                                                         |  |
|       | with water. The items being washed                                        |                                                                         |  |
|       | displace                                                                  |                                                                         |  |
|       | about 25% of the fixture content: thus                                    |                                                                         |  |
|       | actual drainage load is 75% of fixture                                    |                                                                         |  |
|       | capacity                                                                  |                                                                         |  |
| 4     | Determine flow rate and drainage                                          | Calculate flow rate for one-minute                                      |  |
|       | period                                                                    | period                                                                  |  |
|       | In general good practice dictates a                                       | period.                                                                 |  |
|       | one-minute drainage period;                                               | 44.9/1 = 44.9 gpm Flow Rate                                             |  |
|       | however,                                                                  |                                                                         |  |
|       | when conditions permit, a two-                                            | I wo-minute period                                                      |  |
|       | minute                                                                    |                                                                         |  |
|       | drainage period is acceptable.                                            | 44.9/2 = 22.5 gpm Flow Rate                                             |  |
|       | Drainage                                                                  |                                                                         |  |
|       | period is the actual time period to                                       |                                                                         |  |
|       | completely drain the fixture                                              |                                                                         |  |
|       | Flow rate = Actual drainage                                               |                                                                         |  |
|       | load/Drainage period                                                      |                                                                         |  |
| 5     | Select interceptor.                                                       | For one-minute period $-44.9$ gpm                                       |  |
|       | Select interceptor which corresponds to                                   | requires PDI size "50".                                                 |  |
|       | the flow rate calculates.                                                 | For two-minute period – 22.5 gpm                                        |  |
|       | Note: Select next large size when flow                                    | requires PDI size "25".                                                 |  |
|       | rate fails between two sizes listed.                                      |                                                                         |  |
|       |                                                                           |                                                                         |  |

**WARNING:** Cancer and Reproductive Harm - www.p65warnings.ca.gov



#### C. Interceptor Sizing Based on Drainage Fixture Units

| Fixture Outlet or<br>Trap Size (Inch) | Drainage Fixture-<br>unit value | GPM<br>Equivalent | PDI Size Grease<br>Interceptor |
|---------------------------------------|---------------------------------|-------------------|--------------------------------|
| 1 1/4                                 | 1                               | 7.5               | 10                             |
| 1 1/2                                 | 2                               | 15                | 15                             |
| 2                                     | 3                               | 22.5              | 25                             |
| 2 1/2                                 | 4                               | 30                | 35                             |
| 3                                     | 5                               | 37.5              | 50                             |
| 4                                     | 6                               | 45                | 50                             |

Since the possibility of all the fixtures are used and drained simultaneously is very low, using above sizing method can potentially result in an enormous flow and gross over sizing of the interceptor. The specifying engineer should consider the loading factor for any individual fixture based on the realistic usage.

Note: Most jurisdictions are getting away from the arbitrary DFU sizing guidelines.

**WARNING:** Cancer and Reproductive Harm - www.p65warnings.ca.gov